List 3

Derivatives

≈ 73. Use the (ε, δ) definition of a limit to show that the limit of

$$
f(x)=4 x-3
$$

as x approaches 2 is equal to 5 .
As a reminder, starred \hbar tasks are ones that I (Adam) believe are beyond the level of an introductory calculus class.
Let $\varepsilon>0$ be any positive value. We need to find some $\delta>0$ such that

$$
\text { If } 0<|x-2|<\delta \text { then }|(4 x-3)-5|<\varepsilon
$$

Let $\delta=\frac{\varepsilon}{4}$. Because $\varepsilon>0$, we have $\delta>0$ also. If $|x-2|<\delta$ then

$$
\begin{array}{rlrl}
-\delta & < & x-2 & <\delta \\
-\varepsilon / 4 & x-2 & <\varepsilon / 4 \\
-\varepsilon & 4 x-8 & <\varepsilon \\
-\varepsilon & <(4 x-3)-5 & <\varepsilon
\end{array}
$$

and thus $|(4 x-3)-5|<\varepsilon$.
74. Use the limit definition of a derivative (below) to show that the derivative of

$$
f(x)=\frac{36}{x+1}
$$

at $x=2$ is equal to -4 . This task is not starred.

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{36}{2+h+1}-\frac{36}{2+1}}{h}=\lim _{h \rightarrow 0} \frac{\frac{36}{3+h}-12}{h}=\lim _{h \rightarrow 0} \frac{\frac{36}{3+h}-\frac{12(3+h)}{3+h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{36-12(3+h)}{3+h}}{h}=\lim _{h \rightarrow 0} \frac{36-36-12 h}{3 h+h^{2}}=\lim _{h \rightarrow 0} \frac{-12 h}{3 h+h^{2}}=\lim _{h \rightarrow 0} \frac{-12}{3+h} \\
& =\frac{-12}{3+(0)}=\frac{-12}{3}=-4
\end{aligned}
$$

75. Without graphing, determine which one of the three equations below has a solution with $0 \leq x \leq 3$.
(A) $x^{2}=4^{x}$
(B) $x^{3}=5^{x}$
(C) $x^{5}=6^{x}$
(C) because the function $f(x)=x^{5}-6^{x}$ has $f(0)=-1$ and $f(3)=27$. Since $-1<0<27$, by the Intermediate Value Theorem, there must exist an x in $[0,3]$ such that $f(x)=0$.

For a function $f(x)$ and a number a, the derivative of \boldsymbol{f} at \boldsymbol{a}, written $f^{\prime}(a)$, is the slope of the tangent line to $y=f(x)$ at the point $(a, f(a))$ and is calculated as

$$
f^{\prime}(a)=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

The function $f(x)$ is differentiable at \boldsymbol{a} if $f^{\prime}(a)$ exists and is finite.
76. Calculate $f^{\prime}(5)$ for the function $f(x)=x^{3}$. Hint: See Task 52(b). 75
77. Calculate $f^{\prime}(1)$ for the function $f(x)=\sqrt{x}$. Hint: See Task 50(b). $\frac{1}{2}$
78. The graph of a function is shown below. Near $x=1, x=3$, and $x=7$, part of the tangent lines to the graph at those points is shown as a dashed line segment.

(a) List all points where the function is not continuous. $x=5, x=6$
(b) List all points where the function is not differentiable (that is, where the derivative does not exist). $x=4, x=5, x=6, x=7$
79. List all points where $f(x)=\frac{|x|-4}{|x-4|}$ is not differentiable. $x=0$ and $x=4$ The function has a "corner" at $x=0$, so it is continuous there but not differentiable. It has a "jump" at $x=4$, so it is not continuous and also not differentiable there.
80. (a) If $S(x)=f(x)+g(x)$, does that mean that $S^{\prime}(3)=f^{\prime}(3)+g^{\prime}(3)$? That is, is

$$
\begin{aligned}
\lim _{h \rightarrow 0} & \frac{(f(3+h)+g(3+h))-(f(3)+g(3))}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}+\lim _{h \rightarrow 0} \frac{g(3+h)-g(3)}{h}
\end{aligned}
$$

always true? Yes
(b) If $P(x)=f(x) \cdot g(x)$, does that mean that $P^{\prime}(3)=f^{\prime}(3) \cdot g^{\prime}(3)$? That is, is

$$
\begin{aligned}
\lim _{h \rightarrow 0} & \frac{(f(3+h) \cdot g(3+h))-(f(3) \cdot g(3))}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \cdot \lim _{h \rightarrow 0} \frac{g(3+h)-g(3)}{h}
\end{aligned}
$$

always true? No
The linear approximation to $f(x)$ near $\boldsymbol{x}=\boldsymbol{a}$ is the function

$$
L(x)=f(a)+f^{\prime}(a)(x-a) .
$$

The line $y=L(x)$ is the tangent line to $y=f(x)$ at the point $(a, f(a))$.
81. Graph the curve $y=\sqrt{x}$ and the line tangent to that curve at $(1,1)$.
82. (a) Give the linear approximation to \sqrt{x} near $x=1$.
$L(x)=1+\frac{1}{2}(x-1)$ (The slope is from Task 77.)
(b) Use the approximation from part (a) to estimate $\sqrt{1.2}$.
$L(1.2)=1+\frac{1}{2}(1.2-1)=1+\frac{0.2}{2}=1.1$
(c) The true value of $\sqrt{1.2}$ is $1.09545 \ldots$, so is $L(1.2)$ a good approximation?

This question asks for an opinion, so you could answer "yes" or "no". I (Adam) would say "yes" because is correct to three decimal places (1.10), and the percentage error is only $\frac{1.1-1.09545}{1.09545}=0.004=0.4 \%$.
(d) Use the approximation from part (a) to estimate $\sqrt{8}$.
$L(5)=1+\frac{1}{2}(8-1)=\frac{9}{2}=4.5$
(e) The true value of $\sqrt{8}$ is $2.82843 \ldots$, so is $L(8)$ a good approximation?

I would say "no". The input 8 is not close to $x=1$, so it is not surprising that $L(8)$ is not close to $\sqrt{8}$.
83. If f is a function with $f(-4)=2$ and $f^{\prime}(-4)=\frac{1}{3}$, give the linear approximation to $f(x)$ near $x=-4 . \quad L(x)=2+\frac{1}{3}(x+4)$
84. If g is a function with $g(5)=12$ and $g^{\prime}(5)=2$, use a linear approximation to estimate the value of $g(4.9) . L(4.9)=11.8$
85. Give an equation for the tangent line to $y=4 x^{2}-x$ at $x=2$.
$y=14+15(x-2)$ or $y=15 x-16$
86. Give an equation for the tangent line to $7 x+2$ through the point $(30,212)$. $y=30+7(x-212)$ or $y=7 x+2$. (Since $y=7 x+2$ is a straight line, the tangent line to it - at any point - is exactly itself.)

The Constant Multiple Rule: If c is a constant then
$(c f)^{\prime}=c f^{\prime} \quad(c f(x))^{\prime}=c f^{\prime}(x) \quad \frac{\mathrm{d}}{\mathrm{d} x}[c f]=c \frac{\mathrm{~d} f}{\mathrm{~d} x} \quad D[c f]=c D[f]$
(these are four ways of writing exact the same fact).
The Sum Rule: $\frac{\mathrm{d}}{\mathrm{d} x}[f+g]=\frac{\mathrm{d}}{\mathrm{d} x}[f]+\frac{\mathrm{d}}{\mathrm{d} x}[g]$.
The Power Rule: If p is a constant then $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{p}\right]=p x^{p-1}$.
87. All parts of this task have exactly the same answer! Answer: $14 x^{6}$
(a) Find $f^{\prime}(x)$ for the function $f(x)=2 x^{7}$.
(b) Give f^{\prime} if $f=2 x^{7}$.
(c) Find y^{\prime} for $y=2 x^{7}$.
(d) Compute $\frac{\mathrm{d} f}{\mathrm{~d} x}$ for the function $f(x)=2 x^{7}$.
(e) Compute $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for $y=2 x^{7}$.
(f) Give the derivative of $2 x^{7}$ with respect to x.
(g) Find the derivative of $2 x^{7}$.
(h) Calculate $\frac{\mathrm{d}}{\mathrm{d} x} 2 x^{7}$.
(i) Calculate $\left(2 x^{7}\right)^{\prime}$.
(j) Calculate $D\left[2 x^{7}\right]$.
(k) Differentiate $2 x^{7}$ with respect to x.
(ℓ) Differentiate $2 x^{7}$.
88. Differentiate $x^{5}+\frac{2}{9} x^{3}+\sqrt{3 x}+\frac{x^{10}}{\sqrt{x}} \cdot 5 x^{4}+\frac{2}{3} x^{2}+\frac{\sqrt{3}}{2 \sqrt{x}}+\frac{19}{2} x^{17 / 2}$
89. Differentiate $(x+\sqrt{x})^{2} \cdot 2 x+3 \sqrt{x}+1$ or $2(x+\sqrt{x})\left(1+\frac{1}{2 \sqrt{x}}\right)$
≈ 90. Differentiate $(x+\sqrt{x})^{100} . \sqrt{100(x+\sqrt{x})^{99}\left(1+\frac{1}{2 \sqrt{x}}\right)}$
91. For each of the functions below, can the Power Rule and/or Constant Multiple Rule (along with maybe some algebra) be used to find the derivative? If so, give the derivative.
(a) $2 x^{6}$ Yes: $12 x^{5}$
(b) $2 \sqrt{x}$ Yes: $x^{-1 / 2}$ or $\frac{1}{\sqrt{x}}$
(c) $\sqrt{5 x}$ Yes: $\frac{\sqrt{5}}{2} x^{-1 / 2}$
(d) x^{π} Yes: $\pi x^{\pi-1}$
(e) $x^{\sin x}$ No
(f) $(\sin x)^{x}$ No
(g) e^{x} No!
(h) $\cos (5 x) \mathrm{No}$
(i) $\sin (5 \cos (x))$ No
(j) $e^{5 \ln (x)}$ Yes: $5 x^{4}$
(k) $\frac{3}{x^{6}}$ Yes: $-18 x^{-7}$
(ℓ) x^{x} No!
(m) $\ln (2+x)$ No
(n) $\ln (2 x)$ No
(o) $\ln \left(2^{x}\right)$ Yes: $\ln (2)$
(p) $\ln \left(x^{2}\right)$ No
92. Is it possible to find the derivative of the following functions using the Power Rule, Constant Multiple Rule, and Sum Rule?
(a) $x+\ln \left(5 e^{x}\right)$ This function equals $2 x+\ln (5)$, so Yes: 2 .
(b) $\frac{2 x}{x+6} \mathrm{No}$
(c) $\frac{x+6}{2 x}$ Yes: $-3 x^{-2}$ or $\frac{-3}{x^{2}}$
(d) $\frac{x+\frac{1}{x}}{\sqrt{x}}$ Yes: $\frac{1}{2} x^{-1 / 2}-\frac{3}{2} x^{-5 / 2}$
93. Give an equation for the tangent line to $y=x^{3}-x$ at $x=2 . y=6+11(x-2)$ Other formats, such as $y=11 x-16$, may also be correct.
¿94. Find a line that is tangent to both $y=x^{2}+20$ and $y=x^{3} . y=12 x-16$ is tangent to $y=x^{2}+20$ at $x=6$ and tangent to $y=x^{3}$ at $x=2$.
95. Give the derivative of each of the following functions.
(a) $x^{7215} 7215 x^{7214}$
(b) $5 x^{100}+9 x 500 x^{99}+9$
(c) $2 x^{3}-6 x^{2}+10 x+16 x^{2}-12 x+10$
(d) $3 \sqrt{x} \frac{3}{2} x^{-1 / 2}$ or $\frac{3}{2 \sqrt{x}}$
(e) $\sqrt[3]{x} \frac{1}{3} x^{-2 / 3}$ or $\frac{1}{3 \sqrt[3]{x^{2}}}$
(f) $\sqrt{x}^{3} \sqrt{\frac{2}{3} x^{-1 / 3}}$ or $\frac{2}{3 \sqrt[3]{x}}$
(g) $31 \quad 0$
(h) $x+\frac{1}{x} 1-x^{-2}$ or $1-\frac{1}{x^{2}}$
(i) $\sqrt { x } + \frac { 1 } { \sqrt { x } } \longdiv { \frac { 1 } { 2 } x ^ { - 1 / 2 } + \frac { - 1 } { 2 } x ^ { - 3 / 2 } }$ or $\frac{1}{2 \sqrt{x}}-\frac{1}{2 \sqrt{x^{3}}}$
(j) $(3 x+7)^{2} 18 x+42$ or $6(3 x+7)$
96. Give an example of a function whose derivative is...
(a) x^{2} Any function that is $\frac{1}{3} x^{3}+$ a constant. This is often written $\frac{1}{3} x^{3}+C$. Correct specific examples include $\frac{1}{3} x^{3}+5$ and $\frac{1}{3} x^{3}-\frac{328}{101}$ and just $\frac{1}{3} x^{3}$.
(b) \sqrt{x} The simplest answer is $\frac{2}{3} x^{3 / 2}$.
(c) $\frac{1}{x^{2}}$ The simplest answer is $\frac{-1}{x}$.
\mathcal{W} (d) $\frac{1}{x}$ The simplest answer is $\ln x$.
97. Give an example of a function whose derivative is $7 x^{6}+8 x^{3}+9 . x^{7}+2 x^{2}+9 x$ Adding any constant to this also gives a correct answer. This includes $x^{7}+2 x^{2}+$ $9 x+1$ and $x^{7}+2 x^{2}+9 x+\sqrt{37}$ and $x^{7}+2 x^{2}+9 x-58$, etc.
98. Is $x^{3}-x^{1 / 3}$ continuous everywhere? Yes Is it differentiable everywhere? No because $\frac{\mathrm{d} y}{\mathrm{~d} x}$ does not exist at $x=0$.
99. If $f(x)=8 x^{4}-x^{2}$, for what values of x does $f(x)=0$? $\frac{-1}{2 \sqrt{2}}, 0, \frac{1}{2 \sqrt{2}}$

For what values of x does $f^{\prime}(x)=0$? $\frac{-1}{4}, 0, \frac{1}{4}$
100. For the function $f(x)=x^{3}$ and $g(x)=2 x^{2}, \ldots$
(a) Calculate the derivative of $f .3 x^{2}$
(b) Calculate the derivative of $g .4 x$
(c) Calculate the derivative of

$$
f(x)+g(x)=x^{3}+2 x^{2} .
$$

$$
3 x^{2}+4 x
$$

(d) Calculate the derivative of

$$
f(x) \cdot g(x)=2 x^{5} .
$$

$$
10 x^{4}
$$

(e) Does $(f+g)^{\prime}=f^{\prime}+g^{\prime}$? In other words, is your answer to (c) the same as adding your answers to (a) and (b)? Yes
(f) Does the derivative of a sum equal the sum of the derivatives? Yes
(g) Does $(f \cdot g)^{\prime}=f^{\prime} \cdot g^{\prime}$? In other words, is your answer to (d) the same as multiplying your answers to (a) and (b)? No!
(h) Does $\frac{\mathrm{d}}{\mathrm{d} x}[f \cdot g]=\frac{\mathrm{d} f}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} g}{\mathrm{~d} x}$? This is exactly the same question as (g). No!
(i) Does the derivative of a product equal the product of the derivatives?

