Analysis 1, Summer 2023 List 3 Derivatives

 ≈ 73 . Use the (ε, δ) definition of a limit to show that the limit of

$$f(x) = 4x - 3$$

as x approaches 2 is equal to 5.

As a reminder, starred \bigstar tasks are ones that I (Adam) believe are beyond the level of an introductory calculus class.

Let $\varepsilon > 0$ be any positive value. We need to find some $\delta > 0$ such that

If
$$0 < |x - 2| < \delta$$
 then $|(4x - 3) - 5| < \varepsilon$.
Let $\delta = \frac{\varepsilon}{4}$. Because $\varepsilon > 0$, we have $\delta > 0$ also. If $|x - 2| < \delta$ then
 $-\delta < x - 2 < \delta$
 $-\varepsilon/4 < x - 2 < \varepsilon/4$
 $-\varepsilon < 4x - 8 < \varepsilon$
 $-\varepsilon < (4x - 3) - 5 < \varepsilon$

and thus $|(4x-3)-5| < \varepsilon$.

74. Use the limit definition of a derivative (below) to show that the derivative of

$$f(x) = \frac{36}{x+1}$$

at x = 2 is equal to -4. This task is *not* starred.

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$
$$= \lim_{h \to 0} \frac{\frac{36}{2+h+1} - \frac{36}{2+1}}{h} = \lim_{h \to 0} \frac{\frac{36}{3+h} - 12}{h} = \lim_{h \to 0} \frac{\frac{36}{3+h} - \frac{12(3+h)}{3+h}}{h}$$
$$= \lim_{h \to 0} \frac{\frac{36-12(3+h)}{3+h}}{h} = \lim_{h \to 0} \frac{36-36-12h}{3h+h^2} = \lim_{h \to 0} \frac{-12h}{3h+h^2} = \lim_{h \to 0} \frac{-12}{3+h}$$
$$= \frac{-12}{3+(0)} = \frac{-12}{3} = -4$$

- 75. Without graphing, determine which one of the three equations below has a solution with $0 \le x \le 3$.
 - (A) $x^2 = 4^x$ (B) $x^3 = 5^x$ (C) $x^5 = 6^x$

(C) because the function $f(x) = x^5 - 6^x$ has f(0) = -1 and f(3) = 27. Since -1 < 0 < 27, by the Intermediate Value Theorem, there must exist an x in [0,3] such that f(x) = 0.

For a function f(x) and a number a, the **derivative of** f at a, written f'(a), is the slope of the tangent line to y = f(x) at the point (a, f(a)) and is calculated as

$$f'(a) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

The function f(x) is **differentiable at** a if f'(a) exists and is finite.

- 76. Calculate f'(5) for the function $f(x) = x^3$. Hint: See Task 52(b). 75
- 77. Calculate f'(1) for the function $f(x) = \sqrt{x}$. Hint: See Task 50(b). $\frac{1}{2}$
- 78. The graph of a function is shown below. Near x = 1, x = 3, and x = 7, part of the tangent lines to the graph at those points is shown as a dashed line segment.

- (a) List all points where the function is not continuous. x = 5, x = 6
- (b) List all points where the function is not differentiable (that is, where the derivative does not exist). x = 4, x = 5, x = 6, x = 7
- 79. List all points where $f(x) = \frac{|x| 4}{|x 4|}$ is not differentiable. x = 0 and x = 4 The function has a "corner" at x = 0, so it is continuous there but not differentiable. It has a "jump" at x = 4, so it is not continuous and also not differentiable there.

80. (a) If
$$S(x) = f(x) + g(x)$$
, does that mean that $S'(3) = f'(3) + g'(3)$? That is, is

$$\lim_{h \to 0} \frac{\left(f(3+h) + g(3+h)\right) - \left(f(3) + g(3)\right)}{h} = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} + \lim_{h \to 0} \frac{g(3+h) - g(3)}{h}$$

always true? Yes

(b) If
$$P(x) = f(x) \cdot g(x)$$
, does that mean that $P'(3) = f'(3) \cdot g'(3)$? That is, is

$$\lim_{h \to 0} \frac{\left(f(3+h) \cdot g(3+h)\right) - \left(f(3) \cdot g(3)\right)}{h}$$

$$= \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} \cdot \lim_{h \to 0} \frac{g(3+h) - g(3)}{h}$$

always true? No

The linear approximation to f(x) near x = a is the function L(x) = f(a) + f'(a)(x - a).The line y = L(x) is the **tangent line** to y = f(x) at the point (a, f(a)).

81. Graph the curve $y = \sqrt{x}$ and the line tangent to that curve at (1, 1).

- 82. (a) Give the linear approximation to \sqrt{x} near x = 1. $L(x) = 1 + \frac{1}{2}(x - 1)$ (The slope is from Task 77.)
 - (b) Use the approximation from part (a) to estimate $\sqrt{1.2}$. $L(1.2) = 1 + \frac{1}{2}(1.2 - 1) = 1 + \frac{0.2}{2} = 1.1$
 - (c) The true value of $\sqrt{1.2}$ is 1.09545..., so is L(1.2) a good approximation? This question asks for an opinion, so you could answer "yes" or "no". I (Adam) would say "yes" because is correct to three decimal places (1.10), and the percentage error is only $\frac{1.1-1.09545}{1.09545} = 0.004 = 0.4\%$.
 - (d) Use the approximation from part (a) to estimate $\sqrt{8}$. $L(5) = 1 + \frac{1}{2}(8-1) = \frac{9}{2} = 4.5$
 - (e) The true value of $\sqrt{8}$ is 2.82843..., so is L(8) a good approximation? I would say "no". The input 8 is not close to x = 1, so it is not surprising that L(8) is not close to $\sqrt{8}$.
- 83. If f is a function with f(-4) = 2 and $f'(-4) = \frac{1}{3}$, give the linear approximation to f(x) near x = -4. $L(x) = 2 + \frac{1}{3}(x+4)$
- 84. If g is a function with g(5) = 12 and g'(5) = 2, use a linear approximation to estimate the value of g(4.9). L(4.9) = 11.8
- 85. Give an equation for the tangent line to $y = 4x^2 x$ at x = 2. y = 14 + 15(x - 2) or y = 15x - 16
- 86. Give an equation for the tangent line to 7x + 2 through the point (30, 212).

y = 30 + 7(x - 212) or y = 7x + 2. (Since y = 7x + 2 is a straight line, the tangent line to it—at any point—is exactly itself.)

The Constant Multiple Rule: If c is a constant then

$$(cf)' = cf'$$
 $(cf(x))' = cf'(x)$ $\frac{\mathrm{d}}{\mathrm{d}x}[cf] = c\frac{\mathrm{d}f}{\mathrm{d}x}$ $D[cf] = cD[f]$

(these are four ways of writing exact the same fact).

The Sum Rule: $\frac{d}{dx}[f+g] = \frac{d}{dx}[f] + \frac{d}{dx}[g]$. The Power Rule: If p is a constant then $\frac{d}{dx}[x^p] = p x^{p-1}$.

- 87. All parts of this task have exactly the same answer! Answer: $14x^6$
 - (a) Find f'(x) for the function $f(x) = 2x^7$.
 - (b) Give f' if $f = 2x^7$.
 - (c) Find y' for $y = 2x^7$.
 - (d) Compute $\frac{df}{dx}$ for the function $f(x) = 2x^7$.
 - (e) Compute $\frac{dy}{dx}$ for $y = 2x^7$.
 - (f) Give the derivative of $2x^7$ with respect to x.

- (g) Find the derivative of $2x^7$.
- (i) Calculate $(2x^7)'$. (j) Calculate $D[2x^7]$. (h) Calculate $\frac{\mathrm{d}}{\mathrm{d}x}2x^7$.
- (k) Differentiate $2x^7$ with respect to x.
- (ℓ) Differentiate $2x^7$.

88. Differentiate
$$x^5 + \frac{2}{9}x^3 + \sqrt{3x} + \frac{x^{10}}{\sqrt{x}}$$
. $5x^4 + \frac{2}{3}x^2 + \frac{\sqrt{3}}{2\sqrt{x}} + \frac{19}{2}x^{17/2}$

89. Differentiate $(x + \sqrt{x})^2$. $2x + 3\sqrt{x} + 1$ or $2(x + \sqrt{x})(1 + \frac{1}{2\sqrt{x}})$

\$\frac{1}{100}\$ 90. Differentiate
$$(x + \sqrt{x})^{100}$$
. $100(x + \sqrt{x})^{99}(1 + \frac{1}{2\sqrt{x}})^{100}$

- 91. For each of the functions below, can the Power Rule and/or Constant Multiple Rule (along with maybe some algebra) be used to find the derivative? If so, give the derivative.
 - (a) $2x^6$ Yes: $12x^5$ (b) $2\sqrt{x}$ Yes: $x^{-1/2}$ or $\frac{1}{\sqrt{x}}$ (c) $\sqrt{5x}$ Yes: $\frac{\sqrt{5}}{2}x^{-1/2}$

 - (d) x^{π} Yes: $\pi x^{\pi-1}$
 - (e) $x^{\sin x}$ No
 - (f) $(\sin x)^x$ No
 - (g) e^x No!
 - (h) $\cos(5x)$ No
 - (i) $\sin(5\cos(x))$ No
 - (j) $e^{5\ln(x)}$ Yes: $5x^4$
 - (k) $\frac{3}{x^6}$ Yes: $-18x^{-7}$
 - (ℓ) x^x No!
 - (m) $\ln(2+x)$ No
 - (n) $\ln(2x)$ No
 - (o) $\ln(2^x)$ Yes: $\ln(2)$
 - (p) $\ln(x^2)$ No
- 92. Is it possible to find the derivative of the following functions using the Power Rule, Constant Multiple Rule, and Sum Rule?
 - (a) $x + \ln(5e^x)$ This function equals $2x + \ln(5)$, so Yes: 2

(b)
$$\frac{2x}{x+6}$$
 No

- (c) $\frac{x+6}{2x}$ Yes: $-3x^{-2}$ or $\frac{-3}{x^2}$ (d) $\frac{x+\frac{1}{x}}{\sqrt{x}}$ Yes: $\frac{1}{2}x^{-1/2} - \frac{3}{2}x^{-5/2}$
- 93. Give an equation for the tangent line to $y = x^3 x$ at x = 2. y = 6 + 11(x 2)Other formats, such as y = 11x - 16, may also be correct.
- ☆ 94. Find a line that is tangent to both $y = x^2 + 20$ and $y = x^3$. y = 12x 16 is tangent to $y = x^2 + 20$ at x = 6 and tangent to $y = x^3$ at x = 2.
 - 95. Give the derivative of each of the following functions.
 - (a) $x^{7215} \overline{7215x^{7214}}$ (b) $5x^{100} + 9x \overline{500x^{99} + 9}$ (c) $2x^3 - 6x^2 + 10x + 1 \overline{6x^2 - 12x + 10}$ (d) $3\sqrt{x} \frac{3}{2}x^{-1/2}$ or $\overline{3} \frac{3}{2\sqrt{x}}$ (e) $\sqrt[3]{x} \frac{1}{3}x^{-2/3}$ or $\overline{1} \frac{1}{3\sqrt[3]{x^2}}$ (f) $\sqrt{x^3} \frac{2}{3}x^{-1/3}$ or $\overline{2} \frac{2}{3\sqrt[3]{x}}$ (g) $31 \overline{0}$ (h) $x + \frac{1}{x} \overline{1 - x^{-2}}$ or $\overline{1 - \frac{1}{x^2}}$ (i) $\sqrt{x} + \frac{1}{\sqrt{x}} \frac{1}{2}x^{-1/2} + \frac{-1}{2}x^{-3/2}$ or $\frac{1}{2\sqrt{x}} - \frac{1}{2\sqrt{x^3}}$ (j) $(3x + 7)^2 \overline{18x + 42}$ or $\overline{6(3x + 7)}$
 - $96.\,$ Give an example of a function whose derivative is...
 - (a) x^2 Any function that is $\frac{1}{3}x^3 + a$ constant. This is often written $\frac{1}{3}x^3 + C$. Correct specific examples include $\frac{1}{3}x^3 + 5$ and $\frac{1}{3}x^3 - \frac{328}{101}$ and just $\frac{1}{3}x^3$.
 - (b) \sqrt{x} The simplest answer is $\frac{2}{3}x^{3/2}$
 - (c) $\frac{1}{x^2}$ The simplest answer is $\frac{-1}{x}$.
 - $\stackrel{\text{tr}}{\sim}$ (d) $\frac{1}{x}$ The simplest answer is $\ln x$.
 - 97. Give an example of a function whose derivative is $7x^6 + 8x^3 + 9$. $x^7 + 2x^2 + 9x$ Adding any constant to this also gives a correct answer. This includes $x^7 + 2x^2 + 9x + 1$ and $x^7 + 2x^2 + 9x + \sqrt{37}$ and $x^7 + 2x^2 + 9x - 58$, etc.

98. Is $x^3 - x^{1/3}$ continuous everywhere? Yes Is it differentiable everywhere? No because $\frac{dy}{dx}$ does not exist at x = 0.

99. If $f(x) = 8x^4 - x^2$, for what values of x does f(x) = 0? $\frac{-1}{2\sqrt{2}}, 0, \frac{1}{2\sqrt{2}}$

For what values of x does f'(x) = 0? $\boxed{\frac{-1}{4}, 0, \frac{1}{4}}$

100. For the function $f(x) = x^3$ and $g(x) = 2x^2$, ...

- (a) Calculate the derivative of f. $3x^2$
- (b) Calculate the derivative of g. 4x
- (c) Calculate the derivative of

$$f(x) + g(x) = x^3 + 2x^2.$$

 $3x^2 + 4x$

(d) Calculate the derivative of

$$f(x) \cdot g(x) = 2x^5.$$

 $10x^{4}$

- (e) Does (f + g)' = f' + g'? In other words, is your answer to (c) the same as adding your answers to (a) and (b)? **Yes**
- (f) Does the derivative of a sum equal the sum of the derivatives? Yes
- (g) Does $(f \cdot g)' = f' \cdot g'$? In other words, is your answer to (d) the same as multiplying your answers to (a) and (b)? **No!**
- (h) Does $\frac{d}{dx} [f \cdot g] = \frac{df}{dx} \cdot \frac{dg}{dx}$? This is exactly the same question as (g). **No!**
- (i) Does the derivative of a product equal the product of the derivatives? **No!**